
Complexes of Titanium Trichloride. **59**.

By R. J. H. CLARK, J. LEWIS, D. J. MACHIN, and R. S. NYHOLM.

Titanium trichloride reacts with acetonitrile, tetrahydrofuran (THF), and dioxan to form, respectively, the complexes TiCl₃,3MeCN, TiCl₃,3THF, and TiCl₃,2Dioxan. The properties of these complexes have been investigated and, in particular, their spectra and magnetic moments over a temperature range have been measured and employed to determine the distortion from octahedral of the ligand field about the titanium ion. The spectral data indicate that the distortion in the excited state is $\sim 1200-2400$ cm.⁻¹ in the complexes studied, while the magnetic data indicate that the distortion in the ground state is $\sim 400 - 800$ cm.⁻¹. The spectra of the complex VCl_{3} , 3MeCN have been analysed on the basis of an average Dq for the ligands. A comparison of the Dq values for analogous titanium and vanadium complexes is given. The relative position of the solvent molecules in the spectrochemical series has also been elucidated from the spectral measurements.

RELATIVELY few complexes of titanium(III) have been unambiguously established, undoubtedly because of the experimental difficulties involved in their preparation and characterisation. The best known are the hexahydrate 1 and the alum 2 in each of which the titanium(III) ion is octahedrally co-ordinated to six water molecules. These complexes have a historical connection with ligand-field theory in that Ilse and Hartmann³ first interpreted the weak (£ 5.7) band, which occurs at 20,100 cm.⁻¹, as being caused by an electronic transition between the levels formed by splitting the ^{2}D -ground term of titanium(III) by an octahedral ligand field (Fig. 1).⁴ Other complexes of titanium(III)

FIG. 1. Splitting of the ground term of Ti(III) (²D) with (a) an octahedral field, O_{h} , and (b) a tetragonal field, D_{4h} . Terminology after Wilson, Decius, and Cross, "Molecular Vibrations," McGraw-Hill, New York, 1955.

which have been reported to contain this ion in an octahedral environment of equivalent ligands include ⁴ [Ti($C_2H_5 \cdot OH$)₆]Cl₃, [Ti($CH_3 \cdot OH$)₆]Cl₃ (both with $\varepsilon = 4$), [Ti(Bu^iOH)₆]Cl₃, and ⁵ $[Ti(urea)_6]I_3$ ($\epsilon = 10$). In all cases, the ligand-field peak shows distinct double structure, indicating that the field must contain at least a tetragonal component. The latter has the effect of splitting both the ground $({}^{2}T_{2g})$ and the upper $({}^{2}E_{g})$ term, so that two transitions are expected in the 20,000 cm.⁻¹ region, e.g., from ${}^{2}B_{2g}$ to ${}^{2}A_{1g}$ and to ${}^{2}B_{1g}$ in D_{4h} . The split in the ${}^{2}E_{g}$ state is of the order of 1500–3000 cm.⁻¹ in these complexes, and is believed to be the result of a Jahn-Teller distortion of the complex ion.⁶

It has been shown that when the effect of spin-orbit coupling in a d^1 -configuration is considered the magnetic moment of a perfectly octahedral d^1 -complex should approach

- ¹ Hartmann and Schläfer, Z. phys. Chem., 1951, **197**, 116. ² Lipson, Proc. Roy. Soc., 1935, A, **151**, 347.

- ¹ Ilse and Hartmann, Z. phys. Chem., 1951, 197, 239.
 ⁴ Hartmann, Schläfer, and Hansen, Z. anorg. Chem., 1956, 284, 153.
 ⁵ Hartmann, Schläfer, and Hansen, Z. anorg. Chem., 1957, 289, 40.
 ⁶ Jørgensen, Acta Chem. Scand., 1957, 11, 73; Liehr and Ballhausen, Ann. Phys., 1958, 3, 304.

zero as the temperature approaches zero.⁷ However, the magnetic moment of a d^1 -complex can approach the spin-only value (1.73 B.M.) at all temperatures if the asymmetric component of the ligand field increases relatively to the cubic component and if orbital delocalisation of the t_{2g} -electron occurs.⁸ Magnetic data may now be analysed by Figgis's method⁸ to estimate the extent of orbital delocalisation (1 - k)and the separation (8) between the orbital levels derived from T_{2q} . The parameter k (≤ 1) is the factor by which the orbital angular momentum part of the magnetic moment operator $\{(L + 2S)\beta\}$ is reduced by complex formation, and this reduction may be associated with t_{2g} -electron delocalisation on to the ligands (cf. the implications of the paramagnetic resonance spectrum of the IrCl₆²⁻ ion).⁹

An investigation of the reactions between titanium trichloride and certain electrondonor solvents has been carried out to determine the stoicheiometry and stability of possible complexes and in order to estimate the distortion of pseudo-octahedral complexes from true octahedral symmetry.

We have found that titanium trichloride is soluble to the extent of 0.1M in tetrahydrofuran (THF) and in dioxan, to give in each case a deep red solution, in acetonitrile to give a blue solution (~ 1 M), and in acetone to give a greenish-red solution (~ 1 M). The complexes TiCl₃,3C₄H₈O, TiCl₃,2C₄H₈O₂, and TiCl₃,3MeCN have been isolated from the appropriate solvents and the complex [TiCl₃,3COMe₂] has been identified in acetone solution. They will now be discussed separately.

Tetrahydrofuran System.-Trichlorotristetrahydrofurantitanium(III) is obtained as bluish-green crystals by refluxing titanium trichloride with anhydrous tetrahydrofuran. The compound is extremely labile towards water, acetone, acetonitrile, and alcohols. This property nullifies any conductivity measurements. It is insoluble in non-polar solvents. The infrared spectrum, which compares favourably with that found by Pregaglia et al.,¹⁰ indicates that co-ordination of the ligand is through the oxygen atom, because the symmetric (A_1 species, 909 cm.⁻¹) and the asymmetric (B_1 species, 1071 cm.⁻¹) C-O-C stretching vibrations of free tetrahydrofuran are split and lowered by ~ 60 cm.⁻¹ on co-ordination. A similar phenomenon is observed in the infrared spectrum of the corresponding titanium(iv) complex, TiCl₄,2C₄H₈O. The crystals belong to the space group $P2_1/c$ with a = 17.67, b = 12.67, c = 15.37 Å, $\beta = 91.5^{\circ}$, $\rho = 1.445$ g./c.c., leading to an X-ray molecular weight of 748.5. As the formula weight is 370.6 and the space group requires a minimum of 4 molecules per unit cell, the latter must contain either four dimers $\{e.g., of the type [Ti(THF)_4Cl_2]^+[Ti(THF)_2Cl_4]^-\}$ or two sets each of four monomers [TiCl₃,3THF], the sets being oriented differently with respect to the cell edges. Complete structure analysis of the complex has not been carried out, but the diffuse reflectance spectrum of the powdered solid suggests the second possibility. It shows a broad maximum (Fig. 2) stretching from 13,500 to 14,700 cm.⁻¹, indicating that the upper $({}^{2}E_{g})$ term of titanium(III) is split by 1200 cm.⁻¹. The dimeric model would be expected to give a more complicated spectrum. The magnetic moment of the complex has been measured between 283° and 80° k (see Table 1). The value at room temperature is 1.72 B.M., *i.e.*, close to the spin-only value of 1.73 B.M. These data have been fitted ⁸ to an orbital delocalisation factor k = 0.7 and a distortion v = 4.5 (Fig. 3). The parameter $v = \delta/\lambda'$, where $\lambda' = 0.9\lambda$, λ being the spin-orbit coupling constant pertinent to the lowest term for the free ion [155 cm.⁻¹ for titanium(III)]¹¹ and λ' being the value to which λ is reduced in the complex.¹² These results lead to $\delta = 630$ cm.⁻¹, the positive value implying that the orbital singlet derived from ${}^{2}T_{2g}$ lies lowest.

- ⁸ Figgis, Trans. Faraday Soc., 1961, 57, 198, 204.
 ⁹ Griffiths, Owen, and Ward, Proc. Roy. Soc., 1953, A, 219, 526.
 ¹⁰ Pregaglia, Mazzanti, and Moreno, Ann. Chim. (Italy), 1959, 49, 1784.
- ¹¹ Dunn, Trans. Faraday Soc., 1961, 57, 1441.
- ¹² Dunn, J., 1959, 623.

⁷ Kotani, J. Phys. Soc. Japan, 1949, 4, 293.

		381

magnetic susceptibility measurements.							
TiCl ₃ ,3C ₄ H ₈ O		TiCl ₃ ,20	$C_4H_8O_2$	TiCl ₃ ,3CH ₃ CN			
Temp. (ĸ)	$10^6 \chi(Ti)$	Temp. (ĸ)	$10^{6}\chi(Ti)$	Temp. (к)	$10^6\chi({ m Ti})$		
282.8°	1304	301·2°	1225	$302 \cdot 3^{\circ}$	1155		
257.4	1405	279.3	1308	$282 \cdot 0$	1228		
232.6	1520	$255 \cdot 8$	1395	257.7	1328		
217.4	1631	$231 \cdot 2$	1499	$233 \cdot 3$	1436		
196.4	1747	207.0	1622	208.5	1568		
178.3	1901	183.4	1787	186.2	1770		
160.6	2084	163.2	1947	163.3	1978		
144.1	2308	140.5	2203	119.5	2619		
127.7	2568	118.5	2534	103.0	2949		
126.0	2589	102.7	2864	92.3	3270		
115.9	2827	92.8	3113	79.5	3793		
104.1	3096	79.0	3567				
80.6	3911		2.501				

The absorption spectrum of a solution of titanium trichloride in tetrahydrofuran has been recorded (Fig. 2). It is clearly different from the reflectance spectrum of the crystalline compound $TiCl_{3}$, 3THF, and so the nature of the absorbing species is also different. The

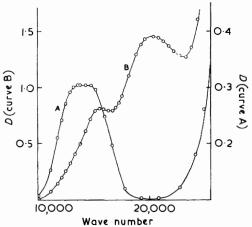


FIG. 2. Spectra of the titanium trichloridetetrahydrofuran system. (A) Diffuse reflectance spectrum of TiCl₃, 3C₄H₈O. (B) Absorption spectrum of TiCl₃ in tetrahydrofuran.

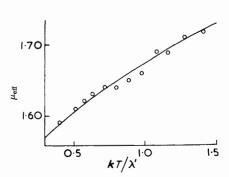


FIG. 3. Plot of μ_{eff} against kT/λ' for TiCl₃, $3C_4H_8O$. Circles are experimental points; the line is calculated from ref. 8 with v = 4.5 and k = 0.7.

separation between the two bands ($v_a = 20,400 \text{ cm}^{-1}$, $\varepsilon_a = 36$; $v_b = 15,500 \text{ cm}^{-1}$, $\varepsilon_b = 20$) is greater than would be expected for a single Ti(III) species, if both bands are due to ligand-field effects. While the reduced magnetic moment in solution ($\mu_{\text{eff}} = 1.4 \pm 0.15 \text{ B.M.}$ at 0.112M) and the isopiestically determined molecular weight (550 as compared with 371 for the monomeric TiCl₃,3THF) suggest the presence of dimers in solution, neither $\varepsilon_a/\varepsilon_b$ nor the shape of the spectrum changes between 20° and 52°C; furthermore, $\varepsilon_a/\varepsilon_b$ does not depend on the concentration of Ti(III), as would be expected for a monomerdimer equilibrium. Application of the rule of average environment indicates that the most strongly perturbing of the possible species present in solution, [Ti(THF)₆]³⁺, would absorb at ~15,700 cm.⁻¹, *i.e.*, in a position corresponding approximately with that of v_b . The low dielectric constant of tetrahydrofuran itself, and the ligand exchange in more polar solvents, precluded the positive conductometric identification of the species [Ti(THF)₆]³⁺ in solution and hence this assignment of v_b is tentative. It is suggested

TABLE 1. Magnetic suscentibility measurements.

that v_a is a charge-transfer band, similar to that found at 18,500 cm.⁻¹ in the reflectance spectrum of titanium trichloride itself.¹³ Experiment shows that v_a is not due to traces of $[\text{Ti}(\text{H}_2O)_{6}]^{3+}$ which is known to absorb at this frequency (albeit with a much lower extinction coefficient).⁴ It also seems improbable that v_a is the $3d-4s^1$ transition because in the free ion the latter configuration lies 80,378 cm.⁻¹ above the $\cdots 3d^1$ configuration.¹⁴ While this value may be reduced on complex formation, it is unlikely to be reduced as far as 20,400 cm.⁻¹.

Dioxan System.—Trichlorobisdioxantitanium(III) is prepared by refluxing an excess of anhydrous dioxan with titanium trichloride and it is deposited as small green crystals. The general properties of the complex are very similar to those of the tetrahydrofuran complex. In its infrared spectrum, the complicated splitting of the bands which occur at ~ 1120 and ~ 880 cm.⁻¹ for free dioxan is taken to imply bonding to the ethereal oxygen atoms. It is not clear from this spectrum whether the complex is five-co-ordinate or

FIG. 4. Spectra of the titanium trichloride-(A) Diffuse reflectance dioxan system. spectrum of $TiCl_3, 2C_4H_8O_2$. (B) Absorption spectrum of TiCl₃ in dioxan.

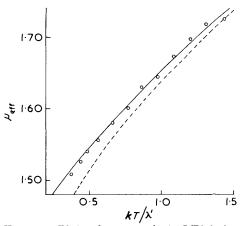


FIG. 5. Plot of μ_{eff} against kT/λ' for TiCl₃, 2C₄H₈O₂. Circles are experimental points; the lines are calculated from ref. 8, with k = 0.7; full line, v = 3.0; broken line, v = 2.5.

whether it attains six-co-ordination because the dioxan behaves as a bidentate group. Five-co-ordination has been considered possible ¹⁵ for the Ti(III) ion in the compound $TiCl_{3,2}N(CH_{3})_{3}$, while it has been suggested that dioxan functions as bidentate ligand in the compound $TiBr_4$, dioxan.¹⁶ (The compound $TiCl_4$, dioxan has also been prepared but it is not possible to decide from its infrared spectrum whether the dioxan is functioning as a monodentate or as a bidentate ligand.) However, the diffuse reflectance spectrum of the complex TiCl₃, $2C_4H_8O_2$ (Fig. 4) is typical of octahedral d^1 complexes. The main transition is at 14,800 cm.⁻¹ with a shoulder at 12,800 cm.⁻¹, *i.e.*, the separation between the levels arising from ${}^{2}E_{g}$ is 2000 cm.⁻¹. The magnetic moment at 300° K is 1.72 B.M., falling to 1.51 B.M. at 79° K (Table 1). These values fit k = 0.7, v = 3.0, $\lambda' = 0.95\lambda$, and hence $\delta = 440$ cm.⁻¹ (Fig. 5).

The absorption spectrum of titanium trichloride in dioxan (Fig. 4) is quite different from the diffuse reflectance spectrum of the compound TiCl_a, 2dioxan, indicating that a

- ¹⁸ Clark and Dunn, unpublished work.
- ¹⁴ "Atomic Energy Levels," ed. Charlotte E. Moore, U.S. Bur. Stand., Circ. no. 467.
 ¹⁵ Antler and Laubengayer, J. Amer. Chem. Soc., 1955, 77, 5250.
 ¹⁶ Rolsten and Sisler, J. Amer. Chem. Soc., 1957, 79, 1068, 1819.

different absorbing species exists in solution. The spectrum, which consists of two peaks $(v_a = 20,900 \text{ cm}.^{-1}, \epsilon_a = 50; v_b = 15,750 \text{ cm}.^{-1}, \epsilon_b = 24)$ is very similar to the absorption spectrum of titanium trichloride in tetrahydrofuran. It seems probable that the absorbing species in the two solutions are analogous.

Acetonitrile System.—Trichlorotriacetonitriletitanium(III) is prepared by refluxing anhydrous acetonitrile with titanium trichloride, the solution depositing blue crystals of the complex on cooling. These appear to be less stable than those of the ethers. The CN stretching vibration (A_1 species) in the complex is 35 cm.⁻¹ above that in free acetonitrile (2253.5 cm.⁻¹),¹⁷ this shift being characteristic of co-ordination of the ligand through the nitrogen atom;¹⁸ e.g., it is as much as 111 cm.⁻¹ in BF₃, CH₃·CN ¹⁹ for which an X-ray analysis has shown that co-ordination is to nitrogen.20 We find the corresponding shift in the complex ¹⁹ TiCl₄, 2CH₃·CN to be 30 cm.⁻¹. The band of medium intensity at

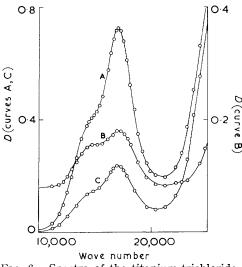
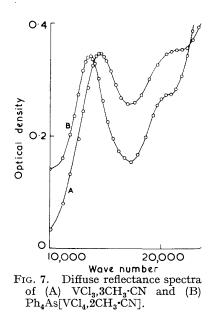



FIG. 6. Spectra of the titanium trichlorideacetonitrile system. (A, C) Absorption spectra of TiCl₃ in CH₃·CN; (A) $3.13 \times$ 10^{-2} M, and (C) 1.13×10^{-2} M. (B) Diffuse reflectance spectrum of TiCl₃, 3CH₃·CN.

2288 cm.⁻¹ in free acetonitrile, which is considered 17 to arise from a combination of v_3 , the symmetric CH₃ deformation vibration (A_1), at 1372 cm.⁻¹, and v_4 , the symmetric C-C stretching vibration (A_1), at 917 cm.⁻¹, is also raised on complex formation. It occurs at 2313 cm.⁻¹ in the titanium(III) complex, with $v_3 = 1372$ cm.⁻¹ and $v_4 = 942$ cm.⁻¹ and at 2302 cm.⁻¹ in the titanium(IV) complex, with $v_3 = 1359$ cm.⁻¹ and $v_4 = 944$ cm.⁻¹. The complex is virtually a non-electrolyte in acetonitrile, as $\Lambda = 4.3$ cm.² mho mole⁻¹ at 3.14×10^{-2} M and 22° c. 1:1 Electrolytes have equivalent conductances $\Lambda \sim 150$ cm.² mho mole⁻¹ in this solvent.¹⁸ The diffuse reflectance spectrum of the powdered solid is identical with the absorption spectrum of a solution of titanium trichloride in acetonitrile (Fig. 6), and thus the common absorbing species is clearly [TiCl₃,3CH₃·CN]⁰. The ligand field peak is at 17,100 cm.⁻¹ (ε 22) with a shoulder at 14,700 cm.⁻¹ (ε 13), implying that the separation between the components of ${}^{2}E_{g}$ is 2400 cm.⁻¹. The extinction coefficients are independent of titanium(III) concentration. There is some doubt as to the exact magnetic moment of this complex at room temperature, values between 1.58 and 1.68 B.M. having

- ¹⁷ Venkateswarlu, J. Chem. Phys., 1951, 19, 293.
- ¹⁸ Nyholm and Scaife, unpublished work.
- ¹⁹ Coerver and Curran, J. Amer. Chem. Soc., 1958, 80, 3522.
 ²⁰ Buzzell, Hoard, Owen, and Salmon, Acta Cryst., 1950, 3, 130.

been obtained with different samples. The magnetic moments over a temperature range have been adjusted so that the value at $302^{\circ}\kappa$ is 1.68 B.M., this having been considered the most reliable value for this temperature. The data fit k = 0.6, v = 4, and $\delta \approx 600$ cm.⁻¹.

By way of comparison we have further investigated the properties of the complex formed between vanadium trichloride and acetonitrile.¹⁸ The analytical values obtained by Scaife implied that there were 4.4 molecules of acetonitrile associated with each molecule of vanadium trichloride, but the infrared spectrum suggested that both free and co-ordinated acetonitrile were present. We find that the complex is isomorphous with the complex [TiCl₃,3CH₃·CN]⁰ and hence that it should be formulated as [VCl₃,3CH₃·CN]⁰. Further, the diffuse reflectance spectrum of the powdered solid (Fig. 7) is practically identical with the absorption spectrum of a solution of vanadium trichloride in acetonitrile,¹⁸ and hence the absorbing species in solution is also considered to be

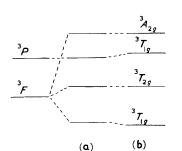


FIG. 8. Splitting of the ground terms of V(III) (d^2) with (a) an octahedral field, O_h , and (b) configurational interaction.

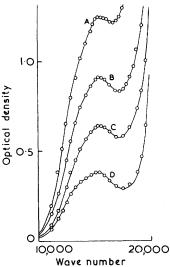


FIG. 9. Absorption spectra of TiCl₃,3(CH₃)₂CO. (A) $3 \cdot 15 \times 10^{-2}$ M, $\varepsilon = 32$. (B) $1 \cdot 85 \times 10^{-2}$ M, $\varepsilon = 39$. (C) $1 \cdot 37 \times 10^{-2}$ M, $\varepsilon = 37$. (D) $0 \cdot 83 \times 10^{-2}$ M, $\varepsilon = 37$.

 $[\text{VCl}_3, 3\text{CH}_3 \cdot \text{CN}]^0$. The two transitions in the visible region of the spectrum, normally assigned as v_a , ${}^3T_{2g} \leftarrow {}^3T_{1g}(F)$ and v_b , ${}^3T_{1g}(P) \leftarrow {}^3T_{1g}(F)$, occur at 14,400 and 21,400 cm.⁻¹ (Fig. 8). The diffuse reflectance spectrum of the complex Ph₄As $[\text{VCl}_4, 2\text{CH}_3 \cdot \text{CN}]$ has also been recorded, and is found to agree with the absorption spectrum of the complex. This confirms the view that $[\text{VCl}_4, 2\text{CH}_3 \cdot \text{CN}]^-$ is the absorbing species in an acetonitrile solution of the complex; $v_a = 13,500$ and $v_b = 20,400$ cm.⁻¹.

Acetone System.—Titanium trichloride dissolves in acetone to a red solution from which we were not able to precipitate a complex, but which on complete removal of solvent yields a red solid whose analysis corresponds to the formula $\text{TiCl}_3.3(\text{CH}_3)_2\text{CO}$. The glutinous nature of the complex prevented measurement of many of its physical properties, but it is virtually a non-electrolyte in acetone ($\Lambda = 2\cdot1$ cm.² mho mole⁻¹ at $8\cdot33 \times 10^{-3}$ M and 22° c). The absorption spectrum (Fig. 9) is typical of octahedral titanium(III) spectra, containing a single asymmetric peak, the band maximum being at 15,400 cm.⁻¹ ($\varepsilon = 37$) and the shoulder at 13,300 cm.⁻¹ ($\varepsilon = 28$), *i.e.*, the ${}^{2}E_{g}$ term is split by 2100 cm.⁻¹. The extinction coefficients are independent of titanium(III) concentration between 3·15 and 0.83×10^{-3} M. The magnetic moment of a 1.06M-solution of the complex in

385

acetone is 1.5 + 0.15 B.M. On the above evidence, the complex has been formulated as [TiCl₃,3(CH₃)₂CO]⁰.

It is noted here also that titanium trichloride will dissolve in acetic acid to a deep blue solution having $\nu \approx 14,000$ cm⁻¹ ($\varepsilon \sim 60$). The shape of the ligand-field band changes with change of titanium(III) concentration, and no definable complex could be precipitated from the solution.

General Discussion.—It appears from the ease with which titanium trichloride dissolves in the above solvents that it is likely to do so in most electron-donor solvents. With strongly co-ordinating ligands, e.g., water or urea, ions of the type $Ti(ligand)_{6}^{3+}$ are formed, but with less strongly co-ordinating ligands, complexes of the type TiCl₃,(ligand)₃ or TiCl₂,(ligand)₂ are formed. The latter ligands do not appear to stabilise the tervalent state of titanium, whereas the hexaurea complex is known to be very stable.⁵ In solution the titanium(III) ion appears always to be six-co-ordinated, although formally it is possible for the ion to be five-co-ordinate in the crystalline compound TiCl₃,2dioxan.

The results have been summarised in Table 2 together with those for hexaureatitanium-(III) perchlorate ²¹ and for titanium(III) alum.²² Using these data and the values Dq =1370 and 2010 cm⁻¹ for titanium(III) octahedrally co-ordinated with chloride ions ¹³ and with water molecules,⁴ we have fitted the ligands into the spectrochemical series CH_3 ·CN > $H_2O > (CH_3)_2CO > C_4H_8O_2 > C_4H_8O > Cl^-$. We have assumed that Jørgensen's rule of average environment is valid.²³ It is apparent from Table 2 that if three of the ligands (L) co-ordinated to the titanium(III) ion in $[TiCl_3, L_3]$ (e.g., $L = CH_3 \cdot CN$) are replaced by three ligands which are closer to the chloride ion in the spectrochemical series (e.g., L =tetrahydrofuran), then the energy separation (δ') between the levels derived from ${}^{2}E_{g}$ is

TABLE 2.

Summary of results on titanium(III) complexes.

	TiCl ₃ ,3THF	TiCl ₃ ,2dioxan	TiCl ₃ ,3(CH ₃) ₂ CO
$10Dq \text{ (cm.}^{-1})$	14,700	14,800	15,400
δ' (cm. ⁻¹)	1200	2000	2100
δ (cm1)	630	440	
k `	0.7	0.7	
$\mu_{\rm eff} (25^{\circ}) ({\rm B.M.})$	1.72	1.72	~ 1.5
	TiCl₃,3CH₃·CN	$Ti(urea)_6(ClO_4)_3$	Ti(III) alum
$10Dq \text{ (cm.}^{-1})$	17,100	17,540	20,100
δ' (cm. ⁻¹)	2400	1540	~ 2350
δ (cm1)	~600	420	~ 800
え`	~ 0.6	0.7	~ 0.9
$\mu_{\mathrm{eff}}~(25^\circ)~(\mathrm{B.M.})$	~ 1.68	1.72	1.73

reduced. This result is consistent with the knowledge that, by such a replacement, the field about the titanium ion is approaching octahedral. It is known that the Dq value for urea ⁵ is 1754 cm.⁻¹ in the complex $[Ti(OCN_2H_4)_6]I_3$, and hence urea may be inserted between water and acetone in the above series; the Dq value for methanol ⁴ is 1680 cm.⁻¹ in the complex [Ti(CH₃·OH)₆]Cl₃, so that this ligand may be inserted between acetone and The distortions (δ) in the ground term (${}^{2}T_{2q}$) of titanium(III) for the acetonitrile, dioxan. dioxan, and tetrahydrofuran complexes are ~ 600 , 440, and 630 cm.⁻¹, respectively, the positive value of δ implying in each case that the orbital singlet lies lowest. It is not possible theoretically to correlate the distortions in the ground and the excited states, but it is interesting that they are found to be of the same order of magnitude. The orbital delocalisation of the t_{2q} electron is of the order of 0.3 (*i.e.*, k = 0.7) for these complexes. It is difficult to estimate the accuracy to which k has been determined, for the latter is particularly sensitive to the absolute value of the magnetic moment at a particular

²¹ Lewis, Machin, Newnham, and Nyholm, J., 1962, 2036.

 ²⁶ Bose, Chakravarty, and Chatterjee, Proc. Roy. Soc., 1960, A, 255, 145.
 ²⁵ Jørgensen, 10^e Conseil de l'Institut International de Chimie Solvay, 1956, p. 355.

⁰

temperature. We estimate k to be accurate to ± 0.05 . Similar values of these parameters, k and δ , have been found previously for other complexes, e.g., $k \sim 0.9$ for Cr(H₂O)₆³⁺; $k \sim 0.8$, $\delta \sim 1200$ cm.⁻¹ for V(H₂O)₆³⁺ in vanadium alum; ²⁴ $\delta \sim 1000$ cm.⁻¹ for Ti(H₂O)₆³⁺ in an AlCl₃,6H₂O lattice; ²⁵ k = 0.87 for K₃Fe(CN)₆.²⁶ The magnetic moments over a temperature range also imply that there is a small reduction in the spin-orbit coupling constant of the metal ion on complex formation. This phenomenon has been discussed previously.¹²

The spectrum of VCl₃,3CH₃·CN has been analysed by a first-order perturbation treatment 27 to yield an average Dq value of 1550 cm.⁻¹ and a ${}^{3}P{}^{-3}F$ term separation of 8100 cm.⁻¹ (the free ion value is 12,925 cm.⁻¹) ¹⁴ (Table 3). A similar analysis for the $[VCl_4, 2CH_3 \cdot CN]^-$ ion yields $Dq = 1460 \text{ cm}^{-1}$ and ${}^{3}P^{-3}F = 8000 \text{ cm}^{-1}$. In Table 3, the Dq values of analogous titanium and vanadium complexes are listed. The uniformly

TABLE 3.

Comparative spectral data for titanium(III) and vanadium(III).

Species	Dq (Ti)	Dq (V)	${}^{3}P - {}^{3}F$ (V)	Refs.
M(H ₂ O) ₆ ³⁺	2010	1850	9000	1, 2, 3
MCl ₃ ,3CH ₃ ·CN	1710	1550	8100	
M(CH ₃ •OH) ₆ ³⁺	1680	1600	8800	1, 4
[MCl ₄ ,2CH ₃ ·CN] ⁻		1460	8000	

Dq and the ${}^{3}P - {}^{3}F$ term separation are in cm.⁻¹.

References: (1) Hartmann, Schläfer, and Hansen, Z. anorg. Chem., 1956, 284, 153. (2) Furman and Garner, J. Amer. Chem. Soc., 1950, 72, 1785. (3) Hartmann and Furlani, Z. phys. Chem. (Frankfurt), 1956, 9, 162. (4) Hartmann and Schläfer, Z. Naturforsch., 1951, 6a, 754.

higher values of Dq for titanium(III) complexes are caused primarily through assuming that 10Dq corresponds to the energy difference between the ground state and the upper of the two levels derived from ${}^{2}E_{g}$ and not the centre of gravity of these levels.

The reduction in the ${}^{3}P^{-3}F$ term separation from that found for the free ion has been observed previously,^{12,28} and is ascribed to a decreased effective charge on the central metal ion owing to increased screening brought about by the donated σ -electrons.

Experimental

Spectra.—The absorption spectra were recorded on a Unicam S.P. 500 spectrophotometer. Solutions were made up from the anhydrous halide under oxygen-free nitrogen in a container connected directly to a 1 cm. silica cell, which, after having been filled, could be sealed from the atmosphere. The diffuse reflectance spectra were recorded by using the standard attachment to the Unicam S.P. 500 spectrophotometer. Infrared spectra were recorded on a Grubb-Parsons double-beam grating spectrophotometer type GS2A for both hexachlorobutadiene and Nujol mulls between sodium chloride plates.

Conductivities.—Conductivities were measured by breaking a tared ampoule of the complex under nitrogen into a glass apparatus which contained the anhydrous solvent. The electrodes were incorporated in the apparatus.

Magnetic Susceptibilities.—The magnetic susceptibilities of complexes at room temperature were determined by the Gouy method. The complexes were sealed from the air. The measurements of the relative values of the susceptibility at different temperatures were made on equipment described previously.²⁹ The susceptibilities of solutions of titanium trichloride were

- ²⁶ Bleaney and O'Brien, Proc. Phys. Soc., 1956, 69, B, 1216.
- ²⁷ Ballhausen, Z. phys. Chem. (Frankfurt), 1957, **11**, 205.
 ²⁸ Owen, Proc. Roy. Soc., 1955, A, **227**, 183.
- ²⁹ Figgis and Nyholm, J., 1959, 331.

²⁴ Figgis, Lewis, and Mabbs, J., 1960, 2480; Pryce and Runciman, Discuss. Faraday Soc., 1958, 26, 34.

²⁵ Wong, J. Chem. Phys., 1960, **32**, 598.

determined by the Gouy method at room temperature and at a magnetic field of 10,000 gauss. The sample volume was 7 ml.

Other Techniques.—X-Ray powder photographs of the acetonitrile complexes were taken with a Phillips Debye–Scherrer camera of 114.8 mm. diameter and copper- K_{α} radiation with a nickel filter. The complexes were sealed in Lindemann glass capillaries. The molecular weight of titanium trichloride in tetrahydrofuran was determined by Clark's modification ³⁰ of the Signer isothermal distillation method. The density of the compound TiCl₃,3THF was determined by the method of flotation.

Preparation of Compounds.—British Oxygen Company's "white spot" nitrogen was deoxygenated by passage through an activated copper column ³¹ at 280° and dehydrated by passage through a magnesium perchlorate column. Solvents were either fractionally distilled and/or redistilled under nitrogen from lithium aluminium hydride or calcium hydride immediately before use and directly into the reaction flask. The titanium trichloride was refluxed with the solvent under nitrogen until reaction was complete $(\frac{1}{2}-6$ hr.). The crystals were filtered under nitrogen and dried in a vacuum. Once prepared, the complexes were sealed in glass manifolds under a vacuum.

Analyses.—Titanium was determined by titration under nitrogen against standard ferric ammonium alum.³² Chloride was determined potentiometrically. Carbon, hydrogen, and nitrogen analyses were carried out by the microanalytical service of this department. These methods gave the following results:

Trichlorotristetrahydrofurantitanium(III). Found: C, 36.9; H, 6.3; Cl, 28.6; Ti, 12.8. $C_{12}H_{24}Cl_3O_3Ti$ requires C, 38.9; H, 6.5; Cl, 28.7; Ti, 12.9%.

Trichlorobisdioxantitanium(III). Found: C, 27.7; H, 4.9; Cl, 33.0; Ti, 15.1.

 $C_{8}H_{16}Cl_{3}O_{4}Ti$ requires C, 29.1; H, 4.9; Cl, 32.2; Ti, 14.5%.

Trichlorotriacetonitriletitanium(III). Found: C, 26.6, 25.4; H, 3.5; N, 15.7; Ti, 17.4. $C_6H_9Cl_3N_3Ti$ requires C, 26.0; H, 3.3; N, 15.2; Ti, 17.3%.

Trichlorotriacetonetitanium(III). Found: C, 30.3; H, 5.3; Cl, 29.2; Ti, 13.4. $C_9H_{18}Cl_3O_3Ti$ requires C, 32.9; H, 5.5; Cl, 32.4; Ti, 14.6%. This compound contains a small amount of very finely powdered titanium dioxide which causes a small lowering of all the analytical figures (including that of Ti, for the volumetric method used for determining this element is not sensitive to it in the form of titanium dioxide).

Tetrachlorobistetrahydrofurantitanium(IV). Found: C, 28.8; H, 4.8; Cl, 42.3; Ti, 14.5. Calc. for $C_8H_{16}Cl_4O_2Ti$: C, 29.1; H, 4.8; Cl, 42.5; Ti, 14.4%.

Tetrachlorodiacetonitriletitanium(IV). Found: C, 17.6; H, 2.6; N, 10.0; Cl, 51.8; Ti, 17.6. Calc. for $C_4H_6Cl_4N_2Ti$: C, 17.7; H, 2.2; N, 10.3; Cl, 52.2; Ti, 17.6%.

We are indebted to British Titan Products Co. Ltd. for a scholarship to one of us (R. J. H. C.), to Dr. P. J. Pauling for the X-ray analysis of $TiCl_3, 3C_4H_8O$, and to Drs. T. M. Dunn and B. N. Figgis for helpful discussions.

WILLIAM RAMSAY AND RALPH FORSTER LABORATORIES, UNIVERSITY COLLEGE, GOWER ST., LONDON, W.C.1. [Receit

[Received, May 21st, 1962.]

³⁰ Clark, Ind. Eng. Chem., Analyt., 1941, 13, 820.

³¹ Meyer and Ronge, Angew. Chem., 1939, 52, 637.

32 Nakazono, Sci. Reports Res. Inst., Tôkohu Univ., 1925, 14, 109.